Skip to main content
PROJECT TITLE
"Single-molecule dynamics of DNA repair assemblies in live cells"

Dr. von Diezmann is a biophysicist who studies how cells regulate the pathway used to repair broken DNA. Errors in specific DNA repair pathways are an early step in the development of many cancers, such as with defects in homologous recombination for breast, ovarian, and pancreatic cancers. The Diezmann lab uses high-resolution microscopy techniques to visualize the process by which DNA breaks are designated for specific repair fates, working primarily in live meiotic nuclei of the model organism C. elegans. By elucidating the mechanisms by which protein assemblies form and transmit information along chromosomes and throughout the nucleus, her lab will help provide a foundation for the development of novel chemotherapies based on modulating the DNA damage response.

CANCER TYPE
AWARD PROGRAM
SPONSOR(S)/MENTOR(S)
NAMED AWARD
PROJECT TITLE
“Fundamental mechanisms that underlie human translation initiation and its dysregulation in cancer”

Dr. Lapointe examines how the synthesis of proteins (translation) is controlled, as dysregulated translation is a ubiquitous feature of cancer. He is focused on a key challenge: how regulation that originates at the end of a messenger RNA (mRNA, a genetic molecule that encodes a protein) impacts the start of translation, which occurs near the beginning of the mRNA. His goal is to reveal and analyze dynamic pathways that underlie this fundamental mechanism to control gene expression. Using an integrated approach of single-molecule fluorescence microscopy, structural, and biochemical strategies, this research should yield generalizable insights into how translation is precisely regulated and how it is disrupted in a wide array of cancers.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
NAMED AWARD