Skip to main content
PROJECT TITLE
"Mitochondrial ubiquitylation mechanisms to exploit metabolic vulnerabilities in cancer"

Cancer cells adapt their metabolism to achieve rapid growth and proliferation. Much of their metabolic malleability hinges on mitochondria, subcellular hubs for energy transformation and biosynthesis. As a key means to control mitochondrial composition and meet metabolic demands, cells mark mitochondrial proteins for degradation by a process called ubiquitylation. How both cancerous and healthy cells direct and monitor mitochondrial ubiquitylation remains poorly understood. Dr. Sheetz [HHMI Fellow] aims to dissect the cellular machinery that performs mitochondrial ubiquitylation and determine how this process promotes metabolic adaptability in cancer cells. A major translational goal is to identify approaches for tuning the levels of mitochondrial ubiquitylation in tumors and in metabolic disorders that put patients at risk for cancer. Dr. Sheetz received his PhD from Yale University, New Haven and his BS from the University of North Carolina, Chapel Hill. 

 

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Michael Rape, PhD
NAMED AWARD
PROJECT TITLE
"Elucidating PABPC1 sequence preferences and determining how these preferences shape gene regulation"

The PABPC1 protein has diverse roles in gene expression control that span functions in mRNA stability, polyA tail length control, and translation regulation. PABPC1 gene amplifications are detected in roughly 4% of cancer samples, but it is unclear how PABPC1 fits into the picture of cancer progression. Dr. Muller [HHMI Fellow] studies the sequence preferences of PABPC1 protein to understand the mechanistic details that determine which transcripts are subject to PABPC1-mediated regulation. Connecting these sequence preferences to the mis-regulation caused by excess PABPC1 may provide a therapeutic handle for cancers that contain PABPC1 gene amplifications. Dr. Muller received his PhD from the University of California, Berkeley and his BS from Arizona State University, Tempe.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
David P. Bartel, PhD
NAMED AWARD
PROJECT TITLE
"The neuroimmune basis of fatigue"

Fatigue is the most common symptom experienced by patients with cancer or undergoing cancer treatment. While chronic inflammation and hormonal imbalance have been suggested as possible causes, the roots of cancer-related fatigue remain unclear and thus we lack effective treatments. Dr. Chiu [HHMI Fellow] seeks to illuminate the physiological basis of fatigue using interdisciplinary approaches that combine the strengths of neuroscience, immunology, and computational biology. Through the lens of brain-body interactions, Dr. Chiu aims to identify key molecular and cellular components of fatigue with the goal of improving treatments for cancer and other severe diseases, such as long COVID. Dr. Chiu received her PhD from the California Institute of Technology, Pasadena and her MS and BS from the National Taiwan University, Taiwan.

 

INSTITUTION
CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Ruslan Medzhitov, PhD
NAMED AWARD
PROJECT TITLE
"Investigating bacterial small RNA-mediated regulation of host behavior"

An organism’s life experiences, such as exposure to bacterial pathogens, can cause sustained changes in its physiology and behavior. How these experiences are encoded in heritable RNA and DNA-associated proteins (called chromatin), and how these in turn affect the physiology of the organism itself and its progeny, are not well understood. Previous research has shown that the roundworm C. elegans can “read” small non-coding RNAs from the pathogenic bacterium Pseudomonas aeruginosa and learn and teach its progeny to avoid this bacterium. Dr. Sengupta’s [Rebecca Ridley Kry Fellow] research investigates how bacterial small RNAs taken up in the intestine can result in lifelong, multigenerational, and organism-wide changes at the epigenetic (RNA and chromatin) level to regulate brain function and behavior. She will investigate which small RNA and chromatin-associated genes are required for the learned response, where these genes function, and what changes at the epigenetic and gene expression level underlie this response. This will inform principles of epigenetic regulation of gene expression following diverse environmental stimuli, and stimuli within tissue environments, including tumor microenvironments. Dr. Sengupta received her PhD from Yale University and her MS and BS from the Indian Institute of Science Education and Research.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Coleen T. Murphy, PhD
PROJECT TITLE
"Modulation of neuronal circuitry using sonogenetics"

Multiple cancers, including prostate, breast, and gastrointestinal cancers, are known to be heavily innervated. However, the role of neurons and their signaling within the tumor microenvironment remains unknown. Previous work has shown that transecting the vagus nerve can block the progression of gastric cancer, emphasizing a critical role for the vagal neurons in this disease. However, these transections produce side effects, making it a difficult strategy to translate to the clinic. Dr. Wong [Kenneth G. and Elaine A. Langone Fellow] is proposing a new method to non-invasively silence neurons within the body. Specifically, she will use ultrasound to silence specific neurons in rodent models in order to determine the impact of these neurons on animal behavior and disease physiology, including the tumor microenvironment. Dr. Wong received her PhD from the University of Texas Southwestern Medical Center and her BS from St. Mary’s University.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Sreekanth H. Chalasani, PhD
PROJECT TITLE
"Investigation of the role of peripheral secreted molecules on sleep and circadian rhythms"

Sleep problems may be a risk factor for developing certain types of cancer—lung, colon, pancreas, and breast—and may affect the progression of these cancers and the effectiveness of their treatment. Conversely, symptoms of cancer or side effects of treatment, including restless legs and obstructive sleep apnea, may cause sleeping problems, reducing quality of life. Understanding the complex relationship between cancer and sleep creates opportunities to improve health, treatment options, and quality of life. Specifically, understanding how the peripheral nervous system and the brain regulate both the timing and rhythmicity of sleep (i.e., circadian control), and the balance between time awake and growing sleep pressure (i.e., homeostatic control), could improve survival rates and the quality of cancer treatment. To this end, Dr. Moore [HHMI Fellow] aims to identify the role of circulating dietary cholesterol on sleep and to conduct a targeted genetic screen to identify peripherally secreted proteins that affect either the circadian or the homeostatic control of sleep. These results will provide a means for therapeutic interventions to ameliorate the effects of sleep disruption. Dr. Moore received her PhD from Princeton University and her MS and BS from the City College of New York.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Amita Sehgal, PhD
NAMED AWARD
PROJECT TITLE
"Engineered cellular fusogens for novel immune effector functions"

Chimeric antigen receptor (CAR) T cells are immune cells that have been genetically engineered to bind specific proteins on cancer cells. CARs can display exquisite sensitivity and discrimination, and CAR T cells have been deployed with spectacular success to detect and kill blood cancers. Unfortunately, they are much less effective against “solid” tumors, such as breast or kidney cancers. To address this problem, Dr. Titus [Connie and Bob Lurie Fellow] is designing T cells with membrane proteins that perform novel functions, including proteins that facilitate membrane fusion or alter the adhesion between T cells and their targets. By redesigning T cell membranes, Dr. Titus hopes to create useful cancer-fighting tools that can be deployed in conjunction with other emerging cellular therapies and immunotherapies. Dr. Titus received his MD and PhD from the University of California, San Francisco, and his AB from Harvard University.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Matthew F. Krummel, PhD
PROJECT TITLE
"Stress granule regulators and their roles in cancer progression"

Dr. Parker [HHMI Fellow] studies the role of molecular assemblies known as stress granules that form when cells are exposed to stressful conditions. The assembly of stress granules upon cellular insult is thought to regulate gene expression and modulate cell survival. Notably, stress granules are present in various cancers and many chemotherapeutic treatments lead to the formation of stress granules. Dr. Parker aims to determine the mechanisms regulating stress granule assembly and disassembly to understand how stress granule formation supports the development of cancer and chemotherapy-resistant tumors. This research has the potential to discover novel targets to treat cancers as well as sensitize chemotherapy-resistant cancers to existing treatments. Dr. Parker received his PhD from Colorado State University and his BS from the University of Oregon.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Roy R. Parker, PhD
NAMED AWARD
PROJECT TITLE
"Estimating growth rates and fluxes using gene expression: Theory and applications"

One of the defining features of cancerous cells is that they divide quickly. The composition of the human microbiome is also due to differences in how quickly microbes grow. How do we determine how fast cells are growing in their natural environment? Is there a way to take a ‘snapshot’ and turn it into a ‘growth rate’? This is the fundamental problem Dr. McCain is studying. He is using computational simulations, machine learning, and experiments with bacteria to determine the optimal way to use markers of gene expression to estimate these critical rates. This project will provide fundamental insights into the use of gene expression data to key processes like growth rate or metabolite secretion rate, both of which have implications for cancer biology. Dr. McCain received his MSc and PhD from Dalhousie University and his BSc from the University of Western Ontario.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Gene-Wei Li, PhD
NAMED AWARD
PROJECT TITLE
"Defining quorum-sensing signaling patterns and their effects on gene expression and morphology in V. cholerae biofilms at the single-cell and community levels"

Dr. Johnson [HHMI Fellow] studies the role that a particular type of cell-cell communication, known as quorum sensing, plays in the development of spatially structured bacterial communities called biofilms. Biofilm formation promotes disease in many clinically relevant bacterial species, and infections caused by them pose severe risks for patients receiving chemotherapy. Dr. Johnson is currently investigating how quorum sensing within biofilms establishes patterns of gene expression, and in turn, how these patterns drive biofilm development and dictate biofilm architectural features. By defining mechanisms underlying biofilm formation and biofilm architecture, Dr. Johnson hopes to contribute to the generation of new approaches for disrupting quorum-sensing-controlled bacterial community interactions as a means of combating bacterial pathogens. Dr. Johnson received her PhD from MIT and her BS from Yale University.

CANCER TYPE
AWARD PROGRAM
RESEARCH AREA
SPONSOR(S)/MENTOR(S)
Bonnie L. Bassler, PhD
NAMED AWARD